If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 18m + -8 = 35m2 Reorder the terms: -8 + 18m = 35m2 Solving -8 + 18m = 35m2 Solving for variable 'm'. Combine like terms: 35m2 + -35m2 = 0 -8 + 18m + -35m2 = 0 Begin completing the square. Divide all terms by -35 the coefficient of the squared term: Divide each side by '-35'. 0.2285714286 + -0.5142857143m + m2 = 0 Move the constant term to the right: Add '-0.2285714286' to each side of the equation. 0.2285714286 + -0.5142857143m + -0.2285714286 + m2 = 0 + -0.2285714286 Reorder the terms: 0.2285714286 + -0.2285714286 + -0.5142857143m + m2 = 0 + -0.2285714286 Combine like terms: 0.2285714286 + -0.2285714286 = 0.0000000000 0.0000000000 + -0.5142857143m + m2 = 0 + -0.2285714286 -0.5142857143m + m2 = 0 + -0.2285714286 Combine like terms: 0 + -0.2285714286 = -0.2285714286 -0.5142857143m + m2 = -0.2285714286 The m term is -0.5142857143m. Take half its coefficient (-0.2571428572). Square it (0.06612244901) and add it to both sides. Add '0.06612244901' to each side of the equation. -0.5142857143m + 0.06612244901 + m2 = -0.2285714286 + 0.06612244901 Reorder the terms: 0.06612244901 + -0.5142857143m + m2 = -0.2285714286 + 0.06612244901 Combine like terms: -0.2285714286 + 0.06612244901 = -0.16244897959 0.06612244901 + -0.5142857143m + m2 = -0.16244897959 Factor a perfect square on the left side: (m + -0.2571428572)(m + -0.2571428572) = -0.16244897959 Can't calculate square root of the right side. The solution to this equation could not be determined.
| 8x-2+-9=7x | | -x/3+2/5=-7/15 | | 63-6x=3 | | 19n=38 | | 6b=18 | | 18b=6 | | K^2+17k+72=0 | | 8(x-2)+3x=39 | | 2(2x+1)=2x+4 | | 5x+3=7x+39 | | 11x+7=-2x+59 | | SA=4(3.14)y | | 8p=150+2p | | 15x+25-18x=-10 | | 4x+2+7x=101 | | 3+5x+2x-1=142 | | 6-7x=70-36x | | 43=11-6x | | 4/5-y=12 | | 1.5x-2.3=5.2 | | 39=5w-3w+9 | | 1.85= | | 7/8x=35 | | 8x-16=9x+5 | | 8x-15=9x+5 | | 7-5x=-21x+59 | | y=-3(x-4)(x-1) | | 3x+20=4x+28 | | 3x+5+6=44 | | 4n+3=2n+15 | | 2y=-y | | 4x+27=9x+2 |